Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 26, 1996 - Issue 8
15
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Nefiracetam hydroxylation by rat liver microsomes and expressed human cytochrome P450s

, &
Pages 821-830 | Received 14 Feb 1996, Published online: 22 Sep 2008
 

Abstract

1. The metabolism of nefiracetam, a novel cognition-enhancer, by rat liver microsomes has been studied.

2. Formation of 5-hydroxy (5-OH-NEF) and hydroxymethyl (HM-NEF) derivatives was the principal pathway of NEF oxidation in male rats, and followed Michaelis-Menten kinetics with Km values of 2·9 and 3·3 mM, and Vmax values of 7·8 and 4·5 nmol/min/mg protein, respectively.

3. Enzymes catalysing the formation of these two major metabolites were examined. 5-OH-NEF formation was inhibited by antibody to rat CYP3A2 by 60%, and antibodies to CYP2B1, CYP2C11 and CYP2E1 also showed 15–25% inhibition of the formation of 5-OH-NEF. The formation of HM-NEF was inhibited by antibodies to CYP2C11 and CYP2B1 by 80% and 35%, respectively. These findings indicate that CYP3A plays a major role in the formation of 5-OH-NEF, and CYP2B, CYP2C11 and CYP2E1 are also involved to some extent in the 5-hydroxylation, and that CYP2C11 is mainly responsible for HM-NEF formation, and CYP2B is also involved in that catalysis in male rats. The results from the studies of the effects of various chemical inducers, of selective substrates or inhibitors of P450s on the formation of these metabolites also supported these latter findings.

4. NEF metabolism in microsomes prepared from B-lymphoblastoid cells expressing human cytochrome P450s showed that 5-OH-NEF formation by CYP3A4 is the principal metabolic pathway in humans.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.