Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 26, 1996 - Issue 9
59
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Metabolite kinetics of ondansetron in rat. Comparison of hepatic microsomes, isolated hepatocytes and liver slices, with in vivo disposition

, , &
Pages 897-907 | Received 28 Mar 1996, Published online: 27 Aug 2009
 

Abstract

1. The kinetics of hydroxylation and N-demethylation of ondansetron have been determined in freshly isolated hepatocytes, hepatic microsomes and precision-cut liver slices from the male Sprague-Dawley rat. In vivo studies have also been carried out to characterize the pharmacokinetics of ondansetron and in vitro data have been assessed for their value as predictors of hepatic clearance.

2. In the three in vitro systems, the formation of hydroxylated and demethylated metabolites were characterized as a function of substrate concentration by a high-affinity, low-capacity site and a low-affinity, high-capacity site which was not saturated over the concentration range studied (2.5–500 μM). Slices gave consistently higher Km's (20 and 30 μM for hydroxylation and demethylation respectively) than hepatocytes (3 and 13 μM respectively) and microsomes (2 and 5 μM respectively). The rank order of Vmax and CLint was the same for each system; hydroxylation rates exceeding demethylation rates. Although two hydroxylations (7- and 8-hydroxy metabolites) occurred exclusively in microsomes, these are believed to originate from a common precursor.

3. The high CLint of ondansetron (150 ml/min/SRW, where SRW is a standard rat weight of 250 g) is well predicted by scaling either microsomal clearance for microsomal protein recovery or hepatocyte clearance for hepatocellularity (212 and 135 ml/min/SRW respectively). In contrast, the use of liver slice data scaled to a whole liver substantially underestimates CLint (9 ml/min/SRW).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.