Publication Cover
Archives of Andrology
Journal of Reproductive Systems
Volume 23, 1989 - Issue 2
92
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Calcium Uptake in Human Spermatozoa: Characterization and Mechanisms

&
Pages 87-96 | Accepted 13 Feb 1989, Published online: 09 Jul 2009
 

Abstract

Basal 45Ca2+ influx was analyzed in human seminal spermatozoa using a method that allows these highly reactive cells to be easily and safely handled. The uptake was a time-dependent process, with its maximum at 400 s. The kinetics of 45Ca2 + transport was saturating as a function of extracellular Ca2 + concentration with a Km of 429 μM and a Vmax of 1.6 nmol 45Ca2 + /mg protein/2.5 min. Depolarizing conditions and the calcium channel blocker verapamil did not affect the uptake; based on this, the presence of operating calcium channels in seminal spermatozoa is excluded. The independence of 45Ca2+ uptake on external concentration of both Na+ and Ca2+ suggests that Na+ /Ca2+ exchange does not occur in these cells. The anticalmodulin drug trifluoperazine, the mitochondrial inhibitor antimycin A, and the SH reagents N-ethylmaleimide and mersalyl all inhibited the ion transport. A calmodulin-regulated, energy-requiring, proteinaceous Ca2+ transporter seems to be the main operating mechanism of calcium uptake in human seminal gametes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.