191
Views
8
CrossRef citations to date
0
Altmetric
REGULAR SUBMISSIONS

Behavioral Phenotypic Properties of a Natural Occurring Rat Model of Congenital Stationary Night Blindness With Cacna1f Mutation

, , , , &
Pages 363-373 | Received 12 Dec 2011, Accepted 09 Apr 2012, Published online: 16 Jul 2012
 

Abstract

Cacna1f gene mutation could lead to incomplete congenital stationary night blindness (iCSNB) disease. The CSNB-like phenotype rat is a spontaneous rat model caused by Cacna1f gene mutation. The present study explored the phenotypic properties of behavior performance in CSNB rats further. The vision-related behaviors of CSNB rats were assessed with a Morris water maze (MWM), passive avoidance tests, and open-field test. Motor ability was evaluated with a rotarod test and a wire hang test, and mechanical pain and thermalgia were used to evaluate sensory system function. Electroretinograms (ERGs) were recorded to evaluate the function of the retina. The vision-related results showed that longer latencies of escape and reduced probe trial in MWM for CSNB rats. There were more errors in avoidance test; CSNB rats were more active in the open field and presented a different pattern of exploration. The locomotor-related behaviors showed shorter falling latencies in the rotarod test and shorter gripping time in CSNB rats. And mechanical thresholds of pain increased in CSNB rats. The ERGs indicated that both the amplitude and latency of rod and cone systems were impaired in the CSNB rats. In summary, Cacna1f gene mutation changed the performance of various behaviors in the CSNB rat aside from vision-related phenotype. Cacna1f gene might play a role in a wide range of responses in the organism. These results confirm the importance of a comprehensive profile for understanding the behavior phenotype of Cacna1f gene mutation in CSNB rat.

Acknowledgements

The authors thank Dr. Lining Feng for revising the writing and giving advice, and thank Prof. Fan Lu for providing way for responding to the reviewer's question. The authors are especially grateful to Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders of Fourth Military Medical University for the generous support to the research, for most of the apparatus. This study was supported by grants from the Natural Science Foundation of China (nos. 30371517, 30571999 and 30872838).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.