214
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Clinical, In Silico, and Experimental Evidence for Pathogenicity of Two Novel Splice Site Mutations in the SH3TC2 Gene

, , , , &
Pages 413-420 | Received 27 Mar 2012, Accepted 09 Jul 2012, Published online: 05 Sep 2012
 

Abstract

Abstract: Charcot-Marie-Tooth (CMT) neuropathy is the most common inherited neuromuscular disorder. CMT is genetically very heterogeneous. Mutations in the SH3TC2 gene cause Charcot-Marie-Tooth neuropathy type 4C (CMT4C), a demyelinating form with autosomal recessive inheritance. In this study, two novel splice site mutations in the SH3TC2 gene have been studied (c.279G → A, c.3676–8G → A). Mutation c.279G → A was detected on one allele in two unrelated families with CMT4C in combination with a known pathogenic mutation (c.2860 C →T in one family, c.505T → C in the other) on the second allele of SH3TC2 gene. Variant c.3676–8G → A was detected in two patients from unrelated families on one allele of the SH3TC2 gene in combination with c.2860C →T mutation on the other allele. Several in silico tests were performed and exon trap experiments were undertaken in order to prove the effect of both mutations on proper splicing of SH3TC2. Fragments of SH3TC2 were subcloned into pET01 exon trap vector (Mobitec) and transfected into COS-7 cells. Aberrant splicing was predicted in silico for both mutations, which was confirmed by exon trap analysis. For c.279G → A mutation, 19 bases from intron 3 are retained in cDNA. The mutation c.3676–8G→ A produces a novel splice acceptor site for exon 17 and complex changes in splicing were observed. We present evidence that mutations c.279G → A and c.3676–8G →A in the SH3TC2 gene cause aberrant splicing and are therefore pathogenic and causal for CMT4C.

ACKNOWLEDGEMENTS

We would like to thank the patients and their families for participation in the study.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

The study was supported by IGA MH CR NT 11521-4 and GACR P303/10/2044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.