684
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Interactions between endothelial cells and epithelial cells in a combined cell model of airway mucosa: effects on tight junction permeability

, , &
Pages 1-11 | Received 04 Nov 2008, Accepted 07 May 2009, Published online: 03 Feb 2010
 

ABSTRACT

Environmental particulates impact first on airway epithelium, whereas circulating infiltrating cells are recruited through the underlying endothelium. An effective cellular immune response requires coordination between endothelium and epithelium. The authors have developed a bilayer culture model consisting of human bronchial epithelial derived cells (16HBE 14o-) and human umbilical vein endothelial cells (HUVECs) cultured as confluent layers on either side of a porous membrane. Confocal microscopy with epithelial and endothelial-specific antibodies showed segregated cell layers. By scanning and transmission electron microscopy, both cell types are polarized and tight junctions formed at the apical interface between cells. Epithelial cells grown in a bilayer showed significantly increased transepithelial resistance (TER) of 2260 ± 64 Ω..cm2 compared to epithelial or endothelial monolayers alone (1400 ± 70 or 80 ± 12 Ω..cm2, respectively). This reflected decreased permeability and was unrelated to cell density or height. Increased TER coincided with increased occludin mRNA and protein in the epithelial cell layer as determined by polymerase chain reaction (PCR) and immunoblotting. Conditioned medium showed that decreased permeability was mediated by soluble endothelial-derived factor(s). This model reflects the in vivo relationship of human airway endothelial cells and epithelial cells. Altered tight junction permeability in cocultures indicates that these cells can work together as an active part of the mucosal barrier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.