214
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Dynamic determination of oxygenation and lung compliance in murine pneumonectomy

, , , , , , , & show all
Pages 301-309 | Received 05 Oct 2010, Accepted 02 Feb 2011, Published online: 16 May 2011
 

ABSTRACT

Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, the authors investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55% to 82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10 mL/kg. Sustained inflation pressures, referred to as a “recruitment maneuver,” improved lung volumes, lung compliance, and arterial oxygenation. In contrast, positive end-expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. These results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.