49
Views
71
CrossRef citations to date
0
Altmetric
Original Article

Pulmonary Macrophages Are Attracted to Inhaled Particles through Complement Activation

, , &
Pages 51-66 | Received 05 Feb 1987, Accepted 11 Apr 1987, Published online: 02 Jul 2009
 

Abstract

Pulmonary macrophages play a central role in clearing inhaled particles from the lung. Previously, we showed that inhaled asbestos fibers activate complement-dependent chemotactic factors on alveolar surfaces to facilitate macrophage recruitment to sites of fiber deposition. In the studies presented here, we have tested a variety of inorganic particles for complement activation in vitro and correlated these data with results on particle-induced macrophage accumulation in vivo. We found that significant chemotactic activity was activated in rat serum and concentrated lavaged proteins by chrysotile and crocidolite asbestos, iron-coated chrysotile asbestos, fiberglass, and wollastonite fibers, as well as by carbonyl iron and zymosan particles. Ash from the Mt. St. Helens volcano did not induce chemotactic activity in either the serum or lavaged proteins.

Rats were exposed to brief aerosols of each of the particles listed above (except zymosan). All the particle types studied were deposited primarily at first alveolar duct bifurcations. In addition, all of the particles, except Mt. St. Helens ash, induced at 48 h postexposure significant accumulations of macrophages at these sites. Time-course studies of carbonyl iron particle exposure demonstrated that iron induced a rapid macrophage response, but both particles and phagocytic macrophages were cleared from alveolar surfaces within 8 days after exposure. The Mt. St. Helens ash induced no macrophage accumulation at any time postexposure. We conclude that particles with a wide variety of physical characteristics are capable of activating complement and consequently attracting macrophages, both in vitro and in vivo. We suggest that complement activation is a mechanism through which pulmonary macrophages can detect inhaled particles on alveolar surfaces.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.