391
Views
57
CrossRef citations to date
0
Altmetric
Research Article

Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: Formulation, characterization and in vivo evaluation

, , , , &
Pages 471-478 | Received 27 Jun 2009, Accepted 29 Nov 2009, Published online: 29 Jan 2010
 

Abstract

S.O (sodium oleate) is an anionic surfactant, which is able to forman ionic complex with positively charged insulin at suitable pH. In a previous study, the insulin-S.O (Ins-S.O) complex was prepared by a hydrophobic ion pairing (HIP) method to improve the apparent liposolubility of insulin. The formation of the complex was further confirmed by Zeta potential and X-ray method. Based on the preliminary study, poly(lactide-co-glycolide) (PLGA) nanoparticles harbouring Ins-S.O complex was prepared via an emulsion solvent diffusion method. The effects of key parameters such as concentration of PVA, concentration of PLGA and initial-loaded drug on the properties of the nanoparticles were investigated. The insulin encapsulation efficiency (EE(%)) reached up to 91.2% and mean diameter of the nanoparticles was sized ∼160 nm under optimal conditions. The pharmacological effects of the nanoparticles made of PLGA (75/25, Av Mw 15 000) were further evaluated to confirm their potential suitability for oral delivery. In order to evaluate hyperglycaemic effect of the nanoparticles for oral administration, Ins-S.O complex-loaded PLGA nanoparticles (20 IU/Kg) were administered orally by force-feeding to diabetic rats. In the case of the nanoparticles, the plasma glucose level reduced to 23.85% from the initial one 12 h post-administration and this continued for 24 h. The results showed that the use of Ins-S.O complex-loaded PLGA nanoparticles is an effective method of reducing plasma glucose levels. The insulin nanoparticles also improved the glycaemic response to an oral glucose challenge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.