283
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Phase-separated chitosan–fibrin microbeads for cell delivery

, &
Pages 344-352 | Received 17 Nov 2010, Accepted 28 Jan 2011, Published online: 08 Jul 2011
 

Abstract

Matrix-enhanced delivery of cells is a promising approach to improving current cell therapies. Our objective was to create cell-laden composite microbeads that combine the attractive features of the natural polymers chitosan and fibrin. Liquid polydimethylsiloxane was used to emulsify a chitosan–fibrinogen solution containing suspended human fibroblast cells, followed by initiation of thrombin-mediated polymerization of fibrin and thermal/pH-mediated gelation of chitosan. Chitosan/fibrin weight percent (wt%) ratios of 100/0, 75/25, 50/50 and 25/75 were investigated. Microbead diameters ranged from 275 ± 99 µm to 38 ± 10 µm using impeller speeds from 600 to 1400 rpm. Fibroblasts remained viable on day 1 post-fabrication in all matrices, but cell viability was markedly higher in high-fibrin microbeads by day 8 post-fabrication. Cell spreading and interaction with the extracellular matrix was also markedly increased in high-fibrin matrices. Such composite microbeads containing viable entrapped cells have potential for minimally invasive delivery of cells for a variety of tissue repair applications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.