295
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Carboxymethyl starch-chitosan-coated iron oxide magnetic nanoparticles for controlled delivery of isoniazid

, , , &
Pages 29-39 | Received 24 Feb 2014, Accepted 25 Jun 2014, Published online: 04 Aug 2014
 

Abstract

Context: The coating material of magnetic nanoparticles plays a great role in drug delivery application. The coatings not only increase the stability of the nanoparticles but also improve the drug release pattern, biocompatibility and mucoadhesivity. Objective: Montmorillonite (MMT) containing magnetic iron oxide nanoparticles coated with polyelectrolyte complex (PEC) of carboxymethyl starch-chitosan were prepared for controlled release applications. Method: The PEC-coated nanoparticles were characterised by Fourier Transmission Infra-red spectroscopy and X-ray diffraction, scanning electron microscope, transmission electron microscope, and dynamic light scattering. Cytotoxicity study was performed by MTT assay analysis. Mucoadhesivity test was performed by using in vitro wash off and ex vivo method. Result: The coating of PEC showed good stability, biocompatibility and mucoadhesivity of the iron oxide magnetic nanoparticles. MMT addition enhanced the swelling, drug loading and release and also the cytotoxicity and mucoadhesivity of the nanoparticles. Conclusion: This study revealed that the MMT incorporated PEC of CMS-CS can be effectively used for coating of iron oxide nanoparticles.

Acknowledgements

University Grant Commission (UGC) is acknowledged for financial support to C. Saikia in the form of institutional fellowship.

Declaration of interest

This study was supported by University Grant Commission (UGC) in the form of institutional fellowship to C. Saikia. There are no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.