406
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Encapsulation of low lipophilic and slightly water-soluble dihydroartemisinin in PLGA nanoparticles with phospholipid to enhance encapsulation efficiency and in vitro bioactivity

, , , , , & show all
Pages 43-52 | Received 25 Mar 2015, Accepted 15 Oct 2015, Published online: 01 Dec 2015
 

Abstract

Context: PLGA nanoparticles have been widely utilised to encapsulate lipophilic drugs for sustained release.

Objective: This study was to enhance encapsulation efficiency and drug loading for the poorly lipophilic drug dihydroartemisinin (DHA) in PLGA nanoparticles, where amphiphilic phospholipid was employed as the intermediate. Materials and methods: DHA-phospholipid complex formulation was optimised using the response surface method. DHA-phospholipid complex-nanoparticles (DHA-PLC-NPs) were prepared using the solvent evaporation method. Results: The particle size, zeta potential, entrapment efficiency and drug loading of the nanoparticles were 265.3 ± 7.9 nm, −21.4 ± 6.3 mV, 74.2 ± 6.5% and 2.80 ± 0.35%, respectively. Compared with the rapidly released free form, DHA underwent sustained release from the nanoparticles. DHA-PLC-NPs presented stronger cell proliferative inhibition than DHA treatment alone and apoptosis was obviously induced after DHA-PLC-NPs treatment. Conclusion: Phospholipid complexes are useful intermediate to improve the lipophilicity of drugs, the interaction with the hydrophobic core of PLGA and the encapsulation efficiency of poorly lipophilic drugs in polymeric nanoparticles.

Acknowledgements

We thank Dr Qingwen Zhang, Ms. Lin Li and Mr. Chengyu Wu for their helpful discussion.

Declaration of interest

There is no conflict of interest. We are thankful for the financial support from the University of Macau (Research Grant MYRG095 (Y1-L2)-ICMS12-ZY), Macao Science and Technology Development Fund (044/2011/A2) and the National Basic Research Programme of China (No. 2015CB932100).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.