10
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Entrapment and release characteristics of 2-methoxynaphthalene from cylindrical microstructures formed from phospholipids

&
Pages 215-222 | Received 23 Mar 1992, Accepted 31 Mar 1992, Published online: 27 Sep 2008
 

Abstract

Many natural products that exhibit biocidal activity have poor solubility in water. In order to explore the prolonged delivery of these compounds from microtubules we have utilized 2-methoxynaphthalene as a model to elucidate release characteristics of hydrophobic compounds entrapped in microtubules by spectrophotometric absorbance at 255 nm. Entrapment of this compound in microcylinders was accomplished by addition of 2-methoxynaphthalene to a watersoluble epoxy, or entrapment of the neat compound. Variation of the release rate is possible for 2-methoxynaphthalene based on the mode of entrapment and by variations in the methods used to immobilize the compound within the microcylinders. Unlike conventional microencapsulation techniques which require inclusion of the active agent at the time of formation, the use of microcylinders allows for the inclusion of a variety of active agents and the tailoring of release characteristics after their formation. We report the results of in vitro release rates of 2-methoxynaphthalene from a static diffusion system designed to explore release of hydrophobic compounds into an aqueous environment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.