337
Views
50
CrossRef citations to date
0
Altmetric
Original Article

Effect of primary emulsions on microsphere size and protein-loading in the double emulsion process

&
Pages 225-241 | Received 05 Nov 1995, Accepted 19 Jan 1996, Published online: 26 Jun 2009
 

Abstract

Incorporation of a protein drug in microspheres made of a hydrophobic polymer is commonly achieved via double liquid-liquid emulsification (w/o/w) or by dispersing a powdered protein in a polymer solution followed by liquid-liquid emulsification (s/o/w). This study focused on the effect of the first operating step in both processes on the size and protein-loading of the microspheres. Bovine serum albumin (BSA) was used as the model protein and poly(methyl methacrylate) (PMMA) was used as the model polymer. The w/o emulsion was characterized based on the degree of emulsion fineness which was controlled using rotor/stator homogenization. The s/o emulsion was characterized based on protein powder size and shape. Protein powders of different sizes and shapes were produced using different powder preparation methods. In both emulsification processes, the second operating step which produced the microspheres was conducted in either a continuously stirred tank reactor (CSTR) or a static mixer. The size of the microspheres thus prepared was found to increase with increasing size of the protein powder in the s/o/w system but increase with decreasing size of the liquid emulsion droplets in the w/o/w system. Empirical correlations can accurately predict the size of the microspheres if the size of w/o emulsion droplets and protein powder is 10 less than the microsphere size. Protein loading in the microspheres decreased with respect to increases in w/o emulsion droplet size or in protein powder size. We propose that these phenomena are attributed to two mechanisms, fragmentation along the weak routes in the w/o/w system and particle redistribution as the result of terminal velocity in the s/o/w system. The role of protein powder shape was not significant until the protein powder size exceeded 5 μm. Irregular-shaped protein powders resulted in lower encapsulation efficiency than spherical-shaped protein powders.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.