2,356
Views
46
CrossRef citations to date
0
Altmetric
Research Articles

Mathematical models of laser-induced tissue thermal damage

, PhD
Pages 741-750 | Received 01 Mar 2011, Accepted 11 Apr 2011, Published online: 18 Nov 2011
 

Abstract

Laser sources are under increasing study for in vivo tumour ablation. Photo-thermal ablation in tissues varies tremendously in governing physical phenomena, depending on wavelength, owing to wide variation in the optical properties of tissues, specifically the dominant chromophore and degree and type of scattering. Once converted into local tissue heating, however, the governing thermodynamic principles remain the same. Observed irreversible thermal alterations range from substantial structural disruption due to steam evolution in high temperature short-term activations to low temperature rise, longer-term initiation of the complex protein cascades that result in apoptosis and/or necroptosis. The usual mathematical model in hyperthermia studies, the thermal isoeffect dose, arising from the relative reaction rate formulation, is not an effective description of the higher temperature effects because multiple processes occur in parallel. The Arrhenius formulation based on the theory of absolute reaction rates is much more useful and descriptive in laser heating since the multiple thermodynamically independent processes may be studied separately.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.