790
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Modification of the hTERT promoter by heat shock elements enhances the efficiency and specificity of cancer targeted gene therapy

, , , , , , , & show all
Pages 244-253 | Received 19 Sep 2015, Accepted 02 Dec 2015, Published online: 16 Mar 2016
 

Abstract

Purpose: One of the current challenges facing cancer gene therapy is the tumour-specific targeting of therapeutic genes. Effective targeting in gene therapy requires accurate spatial and temporal control of gene expression. To develop a sufficient and accurate tumour-targeting method for cancer gene therapy, we have investigated the use of hyperthermia to control the expression of a transgene under the control of the human telomerase reverse transcriptase (hTERT) promoter and eight heat shock elements (8HSEs). Materials and methods: Luciferase reporters were constructed by inserting eight HSEs and the hTERT promoter (8HSEs-hTERTp) upstream of the pGL4.20 vector luciferase gene. The luciferase activity of the hTERT promoter and 8HSEs-hTERT promoter were then compared in the presence and absence of heat. The differences in luciferase activity were analysed using dual luciferase assays in SW480 (high hTERT expression), MKN28 and MRC-5 cells (low hTERT expression). The luciferase activity of the Hsp70B promoter was also compared to the 8HSEs-hTERT promoter in the above listed cell lines. Lentiviral vector and heat-induced expression of EGFP expression under the control of the 8HSEs-hTERT promoter in cultured cells and mouse tumour xenografts was measured by reverse transcription polymerase (RT-PCR), Western blot and immunofluorescence assays. Results: hTERT promoter activity was higher in SW480 cells than in MKN28 or MRC-5 cells. At 43 °C, the luciferase activity of the 8HSEs-hTERT promoter was significantly increased in SW480 cells, but not in MKN28 or MRC-5 cells. Importantly, the differences in luciferase activity were much more obvious in both high (SW480) and low (MKN28 and MRC-5) hTERT expressing cells when the activity of the 8HSEs-hTERT promoter was compared to the Hsp70B promoter. Moreover, under the control of 8HSEs-hTERT promoter in vitro and in vivo, EGFP expression was obviously increased by heat treatment in SW480 cells but not in MKN28 or MRC-5 cells, nor was expression increased under normal temperature conditions. Conclusions: The hTERT promoter is a potentially powerful tumour-specific promoter and gene therapy tool for cancer treatment. Incorporating heat-inducible therapeutic elements (8HSEs) into the hTERT promoter may enhance the efficiency and specificity of cancer targeting gene therapy under hyperthermic clinical conditions.

Declaration of interest

This work was supported by grants from the National Natural Science Foundation of China (No. 81172362 and No. 81172359), a Science and Technology Project of Shaanxi Province (Grant serial number 2011-K12-19), a Clinical Innovation Fund of the First Affiliated Hospital of Xi’an Jiaotong University (grant serial numbers 12ZD12 and 12ZD21), and the Coordinative and Innovative Plan Projects of Science and Technology in Shaanxi Province (number 2013KTCQ03-08). The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.