23
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Heat loss and blood flow during hyperthermia in normal canine brain I: Empirical study and analysis

, , &
Pages 225-247 | Received 18 May 1987, Accepted 02 May 1988, Published online: 09 Jul 2009
 

Abstract

The effects of blood flow and thermal conduction during microwave hyperthermia were investigated in normal canine brain. Heating was accomplished with an external microstrip spiral antenna and temperature measurements were made using a multichannel fluoroptic thermometry system. In order to determine cooling rates, temperature measurements made during cooling were fitted with a model consisting of a constant value and an exponential term. Data from experiments in both perfused and non-perfused brains could be fitted with this simple model. The resulting cooling rates indicated that heat loss by conduction is comparable to that by blood flow. In another series of experiments, temperature measurements were made during several 1 min cooling intervals in which the power was shut off intermittently during a 35 min heating episode. Results were consistent with a 2–3-fold increase in blood flow rate which occurred gradually throughout the course of heating. Parameters that affect the determination of cooling rates are discussed in terms of the bioheat transfer equation. These investigations demonstrate that a simple heat sink model provides a good representation of the cooling data for the thermal distributions obtained.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.