45
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Heat loss and blood flow during hypothermia in normal canine brain II: Mathematical model

, , &
Pages 249-263 | Received 18 May 1987, Accepted 02 May 1988, Published online: 09 Jul 2009
 

Abstract

A mathematical model for heating and cooling during hyperthermia has been developed from an appropriate solution of a bioheat transfer equation. Predicted cooling rates obtained from the model have been compared with cooling rates obtained from experiments performed on both perfused and non-perfused normal canine brain tissue. The agreement between the predicted and observed cooling rates in non-perfused tissue is satisfactory (within 6–11 per cent) and provides confidence that the conduction process is being accurately represented. The model is then used to estimate the relative contribution of conductive and convective (blood flow) heat loss during cooling for the in vivo experiments. Estimates of blood flow dynamics are made from cooling data taken early and late in a heating course using the model to correct for conductive heat loss. Simplified forms of the bioheat transfer equation are examined. An adequate model for the observed cooling data is one that treats heat loss (both conduction and blood flow) as a heat sink (i.e. an effective perfusion model) rather than an effective thermal conductivity model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.