8
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Potential for localized, adjustable deep heating in soft-tissue environments with a 30-beam ultrasonic hyperthermia system

, , , , , , & show all
Pages 279-299 | Received 14 Mar 1989, Accepted 07 May 1990, Published online: 09 Jul 2009
 

Abstract

Initial heating rates (°C/min) along parallel tracks at depths of 1–14 cm in a static, muscle-like phantom were determined from time-temperature profiles obtained with 'Helios', a 30-beam ultrasonic hyperthermia system developed by Varian Associates. Data were taken at a single operating frequency of 556 kHz, for different sets of focal plane ring diameters of the four-ring array applicator, different levels of transducer driving power and two different focal plane depths, 6 cm and 9 cm. In each experiment, at each point of temperature measurement, analysis of temperature versus time data over a 2 min heating interval permitted separation of the desired phantom heating from artefactual heating resulting primarily from absorption of transverse (shear) waves produced at phantom-metal probe catheter interfaces. The results of the studies conducted suggest that in a non-translating carriage mode, Helios can produce axially and laterally localized deep heating in soft tissues for tissue volumes of lateral dimension up to a minimum of 4 cm and tissue depths of at least 11 cm. The results obtained also suggest that Helios can produce laterally localized heating to tissue depths of at least 11 cm without excessive heating of superficial soft-tissue layers, for tissue volumes of lateral dimension up to a minimum of 8 cm. The methodology used in the phantom studies was applied to the production of localized heating in the right lobe of the liver of adult pigs. Temperature versus time profiles obtained in the in vivo studies indicated that, for the set of system parameters employed, concentration of ultrasonic power at greater depths in the liver (e.g. 10.5 cm versus 5 cm) could be achieved, suggesting that Helios should be able to produce localized heating of targeted hepatic volumes when its operating parameters are selected in accordance with effective treatment planning techniques.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.