51
Views
53
CrossRef citations to date
0
Altmetric
Original Article

Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary

, &
Pages 627-643 | Received 11 Aug 1992, Accepted 29 Dec 1992, Published online: 09 Jul 2009
 

Abstract

In the field of deep regional hyperthermia cancer therapy the Sigma 60 applicator of the BSD-2000 Hyperthermia System is one of the most widely used devices. This device employs four independent sources of radiofrequency electromagnetic energy to heat tumour sites deep within the body. The difficulty in determining the input parameters for the four sources has motivated the development of a computer-based three-dimensional (3D) treatment planning system. The Stanford 3D Hyperthermia Treatment Planning System has been in clinical use at Stanford Medical Center for the past 2 years. It utilizes a patient-specific, three-dimensional computer simulation to determine safe and effective power deposition plans. An optimization programme for the selection of the amplitudes, phases and frequency for the sources has been developed and used in the clinic. Examples of the application of the treatment planning for hyperthermia treatment of pulmonary, pelvic, and mediastinal tumours are presented. Methods for quantifying the relative effectiveness of various treatment plans are reviewed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.