178
Views
28
CrossRef citations to date
0
Altmetric
Original Article

The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: Importance of longitudinal control

, , , , , & show all
Pages 365-385 | Received 13 Jun 1996, Accepted 14 Mar 1997, Published online: 09 Jul 2009
 

Abstract

The quality of temperature distributions that can be generated with the Multi Electrode Current Source (MECS) interstitial hyperthermia (IHT) system, which allows 3D control of the temperature distribution, has been investigated. For the investigations, computer models of idealised anatomies containing discrete vessels, were used. A 7-catheter hexagonal implant geometry with a nearest neighbour distance of 15 mm was used. In each interstitial catheter with a diameter of 21 mm a number of 1 up to 4 electrodes were placed along an ‘active section’ with a length of 50 mm. The electrode segments had lengths of 50, 20, 12 and 9 mm respectively. Both single vessel and vessel network situations were analysed. This study shows that even in situations with discrete vasculature and perfusion heterogeneity it remains possible to obtain satisfactory temperature distributions with the MECS IHT system. Due to its 3D spatial control the temperature homogeneity in the implant can be made quite satisfactory.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.