227
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Design and test of a new multi-amplifier system with phase and amplitude control

, , , , , & show all
Pages 459-477 | Received 29 Apr 1997, Accepted 25 Mar 1998, Published online: 09 Jul 2009
 

Abstract

The clinical relevance of the radiofrequency regional hyperthermia (RF-RHT) as an adjuvant cancer therapy grows continuously. Simulation studies for optimization of RF-RHT based on the annular phased array systems have shown a significant improvement of power deposition patterns with increasing number of channels. However, this probably requires higher phase accuracy and amplitude stability than are provided by presently used clinical systems, e.g. BSD-2000. Measurements performed on the BSD-2000 electronics revealed phase inaccuracies up to pM20° and errors in the power registration of ±20 W (up to ±50 W in the low power range). These errors are further enhanced by the mismatching of the external load (antenna applicator) and thermal instabilities. To achieve the required phase accuracy and long-term stability in the prototype of a new amplifier system, single-sideband (SSB) mixing in combination with direct digital synthesizers (DDS), in-phase and quadrature-phase (IQ) processing and phase-lock loop (PLL) were used. In the DDS's the actual phase of the output signal of each channel is calculated in real-time. No analogue control loop is involved that may cause thermal offset or drift problems. Each DDS operates at a low intermediate frequency (IF) of 1 MHz. To transform the phase information of this IF signal into the desired RF band, SSB mixing-up is performed. A second frequency source, operating as a local oscillator (LO) in the RF band, is required for this technique. Also, the frequency adjustment of the desired RF signal is performed in the LO. These phase and frequency adjustment units are followed by the high efficiency AB-class solid state amplifier unit. The phase and power level stability of the amplifier are controlled by means of digital PLL structures in conjunction with look-up tables. For this control test signals are coupled out by means of directional couplers. The phase control is based on very sensitive phase comparison. These digital control loops are programmable and allow the implementation of different control algorithms. The achieved long-term accuracy (95% confidence interval) is ±1—3 W for output power levels ranging from 10–100W, and ±1° for phase differences between each channel and a reference signal at a constant power level, and ±1.5° for phase difference values at variable power levels between 10–10. W. In conclusion, the new amplifier system is smaller and more efficient than presently available commercial systems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.