700
Views
49
CrossRef citations to date
0
Altmetric
Original Article

Comparative in Vivo Confocal Microscopical Study of the Cornea Anatomy of Different Laboratory Animals

, , , , , , & show all
Pages 1072-1080 | Received 25 Feb 2010, Accepted 02 Aug 2010, Published online: 20 Oct 2010
 

Abstract

Purpose: The aim of the present study was to analyze and compare in vivo morphology of healthy cornea of six different laboratory animals.

Matherials and Methods: One Pomeranian Coarsewool sheep, 5 Beagle dogs, 1 Norwegian and 2 Domestic Short-haired cats, 20 New Zealand White rabbits, 6 Wistar rats, and 10 Balb/c mice were included. The examination was performed bilaterally, using Heidelberg Retina Tomograph equipped with Rostock Cornea Module. The morphology of living corneal layers was visualized and compared between species. The central corneal thickness, density of keratocytes, and endothelial cells were quantified.

Results: The epithelial multilayer showed a similarity in morphology between animal types, displaying three clearly distinguishable layers: superficial, intermediate, and basal. Subbasal nerve fibers were displayed as hyperreflective structures underneath basal cells. The subbasal fibers were confirmed in all species, however, the density varied between species. A pronounced Bowman’s membrane was visualized in sheep. In all other species, however, a thin acellular layer with overlying nerve fibers could be seen between basal epithelial cells and anterior stroma. The keratocytes nuclei could be demonstrated in all species except for mice, where no nuclei but only reflective structures resembling keratocytes cell bodies were detected. Overall, the density of keratocytes nuclei was significantly higher in the anterior than in the posterior stroma. Besides endothelial cells density, the endothelial cells morphology was very similar among all species, except for sheep. The endothelial cells were displayed as polygonal structures with bright cytoplasm and dark borders. In sheep, the appearance of the endothelium was very poor because of a thick hyperreflective Descemet’s membrane.

Conclusions: The present study will help researchers consider appropriate models for animal experiments, depending on focus of investigation. In vivo CLSM can be used for the characterization of the living cornea over time, thus, reducing the number of animal experiments.

ACKNOWLEDGMENTS

The study was supported by the DFG (Transregio 37, Micro- and Nanosystems in Medicine—Reconstruction of Biological Functions).

Declaration of interest: The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.