303
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Detection of Visual Deficits in Aging DBA/2J Mice by Two Behavioral Assays

, , , , &
Pages 481-491 | Received 18 Jun 2010, Accepted 15 Dec 2010, Published online: 10 Feb 2011
 

Abstract

Purpose: The DBA/2J mice have been used as an animal model for human pigmentary glaucoma. However, these mice develop various degrees of disease symptoms at different ages, making it difficult to detect pathological changes of retinal degeneration at glaucoma onset. The purpose of this study is to develop a non-invasive assay to identify individual mice that develop visual deficits.

Materials and Methods: We apply two behavioral tests, a swimming test of visual discrimination and a test of optomotor response, to identify glaucomatous DBA/2J mice. We then examine whether the elevation of intraocular pressure (IOP), the common risk factor for glaucoma, affects visual performances of the DBA/2J mice. We further compare the retinal ganglion cell death, one of the signature glaucoma symptoms, in mice with normal behavior with those with poor visual performances.

Results: Our data demonstrate that (1) the onset of visual deficits in DBA/2J mice is around 7 months of age; (2) within each age group, there are various degrees of visual deficits; and (3) the percentage of mice exhibiting visual deficits increases with age and their visual capacities decrease gradually. Furthermore, the poor visual performances of DBA/2J mice do not correlate with the elevation of IOP. Importantly, compared to mice with normal visual performances in the same age group, mice with poor visual performances exhibit significant loss of retinal ganglion cells. Conclusions: Our studies establish a reliable behavioral assay to identify glaucomatous DBA/2J mice, thus making it possible to examine subtle pathological changes and molecular mechanisms in glaucoma pathogenesis with a relatively small number of samples.

ACKNOWLEDGMENTS

This work has been supported by a Midwest Eye-Banks Research Grant (to X.L.), and NIH-NEI grants R01EY018621 (to J.C.) and R01EY019034 (to X.L.).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.