548
Views
26
CrossRef citations to date
0
Altmetric
Lens

Hydrogel Ring for Topical Drug Delivery to the Ocular Posterior Segment

, , , , &
Pages 653-661 | Received 08 Dec 2014, Accepted 03 May 2015, Published online: 03 Aug 2015
 

Abstract

Purpose: To investigate the efficacy of a topical hydrogel ring for drug delivery to the posterior segment of the rabbit eye.

Materials and methods: Novel hydrogel corneal lenses (CL), scleral/corneal lenses (S/CL), and rings were prepared using poly(hydroxyethyl methacrylate). The devices were immersed in 0.3% ofloxacin ophthalmic solution (OOS) to homogeneously distribute the drug throughout the hydrogel. The medicated CL, S/CL, Ring 1 (standard ring), or Ring 2 (shape-optimized ring) was applied to the surface of the cornea, cornea/bulbar conjunctiva, or bulbar conjunctiva of albino rabbits, respectively. Medicated rings did not touch the corneal surface. In another group, one OOS drop was administered to the eye. After 0.25–8 hours, the hydrogel devices were removed and ocular tissues were harvested. High-performance liquid chromatography (HPLC) was used to measure the ofloxacin concentration in the devices and tissues. The drug concentrations in the posterior segment tissues were compared among ofloxacin delivery methods.

Results: One hour after placement, eyes treated with Ring 1 or S/CL had markedly higher ofloxacin levels in the posterior segment tissues (conjunctiva, sclera, and retina/choroid) than eyes treated with topical OOS or a CL. Lower levels of ofloxacin were found in anterior segment tissues (cornea and aqueous humor) in eyes treated with Ring 1 compared to those treated with S/CL. Ring 2 most effectively delivered ofloxacin to the retina/choroid. The tissue ofloxacin concentration in the fellow eye was markedly lower than the eye treated with Ring 2.

Conclusions: Our results suggest that hydrogel rings are effective in delivering topical ophthalmic drugs to the posterior segment. The drugs are most likely delivered via the transconjunctival/scleral route by lateral diffusion across the bulbar conjunctiva and through the sclera. Systemic drug delivery to the posterior segment is minimal.

ACKNOWLEDGMENTS

The authors thank Drs. Masazumi Yamaguchi and Akiharu Isowaki for useful advice. The authors also thank the SI-DDS project members at Senju Pharmaceutical Co., Ltd. for technical support and helpful comments.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.