86
Views
75
CrossRef citations to date
0
Altmetric
Original Article

Circadian rhythm of intraocular pressure in the rat

, &
Pages 185-191 | Received 31 Jul 1995, Accepted 16 Oct 1995, Published online: 02 Jul 2009
 

Abstract

To define the characteristics of the diurnal variation of intraocular pressure (IOP) in eyes of awake rats, ten male brown Norway rats were entrained to a 12-hour light: 12-hour dark (12L:12D) lighting schedule and were conditioned to IOP measurement with the TonoPen XL tonometer while awake, using only 0.5% proparacaine HC1 anesthesia. The IOP measurements were performed in 4 experiments: Preliminary-IOP was measured at 6-hour intervals in both eyes of each animal, to determine correlation between right and left eyes; Light:Dark-lighting remained the same as in the preliminary experiment, but the measurement schedule was altered so that measurements were obtained at 4-hour intervals in alternating eyes, over two 24-hour light cycles; Dark:Dark-animals were placed in constant dark (0L:24D) and, after 72 h, measurements were obtained at 4-hour intervals in alternating eyes. Animals were then re-entrained to the previous 12L:12D schedule for 7 days, after which they were returned to constant dark and the experiment was repeated; and Dark:Light-animals were entrained to a reversed light:dark cycle (12D:12L) for 28 days, after which measurements were obtained in the same fashion as in the Light:Dark experiment. Close agreement was found between right-and left-eye IOPs. Animals on a 12L:12D schedule exhibited lowest IOP while the lights were on (19.3 ± 1.9 mm Hg), and highest (31.3 ± 1.3 mm Hg) while the lights were off. Pressure changes anticipated the change from light to dark and dark to light. This pattern persisted in constant dark, and was reversed when the cycle was changed to 12D:12L. Brown Norway rats possess a regular rhythm of IOP that is entrained by the cycle of light and dark, and persistence of this rhythm in constant dark establishes it as a circadian rhythm. Furthermore, our results indicate that reliable and physiologically meaningful IOP measurements can be obtained in awake rats using the TonoPen XL tonometer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.