2,395
Views
156
CrossRef citations to date
0
Altmetric
Original Article

Mechanisms of Multidrug Resistance in Cancer Treatment

&
Pages 205-213 | Received 05 Jun 1991, Accepted 27 Aug 1991, Published online: 08 Jul 2009
 

Abstract

Advanced breast cancer responds to a range of cytotoxic agents, but resistance always develops. Understanding the mechanisms of resistance may provide new therapeutic options. There are several major groups of resistance mechanisms. 1) The multidrug resistant phenotype. This is due to a membrane pump that can extrude a wide range of anticancer drugs - the P-glycoprotein. It is inhibited by a range of clinically used calcium channel blockers such as nifedipine and verapamil. Several other membrane proteins of 180 KD, 170 KD, 300 KD and 85 KD have been reported and are associated with MDR. 2) Glutathione transferances and detoxification mechanisms. These are a multigene family of enzymes that conjugate glutathione to chemically reactive groups. There are 3 major groups of enzymes-acidic, basic and neutral. They have been implicated in resistance to doxorubicin, melphalan cisplatinum chlorambucil and other alkylating agents. Other protecting systems include metallothionein and selenium dependent glutathione peroxidase. HSP27 confers doxorubicin resistance. 3) Topoisomerase II. DNA topoisomerases are involved in several aspects of DNA metabolism in particular genetic recombination, DNA transcription, chromosome segregation. They are a target for doxorubicin, mitoxantrone, VP16. Low levels of expression are associated with resistance. However, it is oestrogen inducible and this may be of therapeutic value. A novel topo IIb which is more drug resistant has been reported. 4) DNA repair. A score or more of genes are involved in the repair of DNA damage by drugs and radiation. Defective DNA repair may predispose to cancer of the breast and be responsible for adverse radiation reactions. Enhanced repair has been shown to be a mechanism of cisplatinum resistance. Several genes are inducible by DNA damage and may confer resistance e.g. A45. 5) Drug activation. Mitomycin C as well as cyclophosphamide and VP16 require activation for their effects. Low levels of cytochrome p450 reductase are associated with MMC resistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.