356
Views
26
CrossRef citations to date
0
Altmetric
Original Article

α-Lipoic acid induces collagen biosynthesis involving prolyl hydroxylase expression via activation of TGF-β-Smad signaling in human dermal fibroblasts

, , &
Pages 378-387 | Received 22 Jul 2009, Accepted 13 Nov 2009, Published online: 06 Jul 2010
 

Abstract

The collapse of collagenous networks with aging results in comprehensive changes in the functional properties of skin. α-Lipoic acid (LA) is known to possess beneficial effects against skin aging, effects often presumed to be its antioxidant potential. However, the effects of LA on fibrillogenesis in dermal fibroblasts have not been adequately assessed. In this study, we demonstrated for the first time that LA enhances the biosynthesis of new collagen in normal human dermal fibroblasts (NHDFs). By using a quantitative dye-binding method and immunochemical approaches, we showed that LA effectively increased the expression and subsequently the deposition of type I collagen in NHDFs. LA also facilitated the expression of a collagen-processing enzyme, prolyl-4-hydroxylase, pointing to the existence of a posttranslational mechanism among the LA-mediated effects on collagen synthesis. In addition, we determined that both Smad 2/3 were rapidly phosphorylated by treatment with LA within 30 min, indicating that LA enhances type I collagen synthesis through the activation of Smad signaling. Pretreatment of SB431542, a specific transforming growth factor-β (TGF-β) receptor type I (TβRI) kinase inhibitor, blocked LA-mediated Smad 2/3 phosphorylations and both type I collagen and prolyl-4-hydroxylase expression, suggesting that LA-mediated cell responses are regulated by TβRI kinase-dependent pathway. Levels of TGF-β secretion after 4 hr of treatment with LA were not remarkably elevated, indicating that LA may be able to mimic TGF-β-mediated cell response. The study results produced new insights into the molecular pharmacology of LA in NHDFs, with potential applications in the treatment of aging skin.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.