161
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylation of Extracellular Matrix Tenascin-X Detected by Differential Mass Tagging Followed by NanoLC-MALDI-TOF/TOF-MS/MS Using ProteinPilot Software

Pages 106-116 | Received 04 Jun 2011, Accepted 03 Aug 2011, Published online: 03 Oct 2011
 

Abstract

Reversible protein phosphorylation represents a major mechanism of signal transduction in a variety of cellular functions. An understanding of proteome-wide phosphorylation dynamics is important to obtain an overview of the whole signal transduction network. However, a systematic analysis for differentially expressed phosphoproteins under serum-stimulated response is lacking. Here, an easy and fast approach for the identification of differentially expressed phosphoproteins was used. After enrichment of phosphoproteins from serum-stimulated cell lysates by immobilized metal affinity chromatography, a quantitative proteomic approach with isobaric tag for absolute and relative quantitation labeling in combination with nanoLC-MALDI-TOF/TOF-MS/MS followed by ProteinPilot analysis was used. Consequently, 506 differentially expressed phosphoproteins were identified. Among them, 22 proteins that had a reproducible phosphorylation site at Ser or Thr were identified. Out of these 22 phosphoproteins, 7 are mainly involved in splicing. Among the 22 proteins, it was found that extracellular matrix tenascin-X is phosphorylated, although there is little quantitative change by the serum stimulation. MS/MS analysis revealed a novel phosphorylation site of tenascin-X, Thr1841, located in the loop region between the 10th and 11th fibronectin type III repeats. The phosphorylation of tenascin-X would be considered in clarifying its function in the future.

ACKNOWLEDGMENTS

We thank Hitomi Arauchi for her contribution to preparing some figures. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.