306
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Glutathione protects human nucleus pulposus cells from cell apoptosis and inhibition of matrix synthesis

, , , , &
Pages 132-139 | Received 21 Jun 2013, Accepted 12 Dec 2013, Published online: 24 Jan 2014
 

Abstract

Cell death (apoptosis and necrosis) and extracellular matrix destruction induced by oxidative stress have been suggested to be closely involved in the process of disc degeneration. Glutathione, a natural peptide as a powerful antioxidant in human cytoplasm, plays an important role in protecting living cells. This study is to investigate whether glutathione could retard degenerated phenotypes in cultured disc cells. Human nucleus pulposus cells were isolated and cultured in alginate beads and subsequently treated with a pro-oxidant H2O2 alone or a pro-inflammatory cytokine IL-1β alone or either of them together with glutathione. It was shown that H2O2 dose-dependently promoted nucleus pulposus cell apoptosis detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and decreased mRNA levels of matrix proteins aggrecan and type II collagen determined by quantitative reverse transcription-polymerase chain reaction (RT-PCR). IL-1β could induce production of nitric oxide and decrease of proteoglycan, detected by the Griess reagent and the dimethyl methylene blue, respectively. The deleterious effects of either H2O2 or IL-1β could be efficiently prevented by glutathione. These results indicated that glutathione might be considered as an option for intervention of disc degeneration.

Acknowledgements

This study was performed in the Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.