345
Views
14
CrossRef citations to date
0
Altmetric
Articles

Dual-functioning phage-derived peptides encourage human bone marrow cell-specific attachment to mineralized biomaterials

, &
Pages 160-163 | Received 07 Nov 2013, Accepted 23 Feb 2014, Published online: 26 Aug 2014
 

Abstract

Cell instructive mineralized biomaterials are a promising alternative to conventional auto-, allo-, and xenograft therapies for the reconstruction of critical sized defects. Extracellular matrix proteins, peptide domains, and functional motifs demonstrating cell and mineral binding activity have been used to improve cell attachment. However, these strategies vary in their tissue regeneration outcomes due to lack of specificity to both regenerative cell populations and the material substrates. In order to mediate cell-specific interactions on apatite surfaces, we identified peptide sequences with high affinity towards apatite (VTKHLNQISQSY, VTK) and clonally derived human bone marrow stromal cells (DPIYALSWSGMA, DPI) using phage display. The primary aims of this study were to measure apatite binding affinity, human bone marrow stromal cell (hBMSC) adhesion strength, and peptide specificity to hBMSCs when the apatite and cell-specific peptides are combined into a dual-functioning peptide. To assess binding affinity to hydroxyapatite (HA), binding isotherms were constructed and peptide binding affinity (K1) determined. HBMSC, MC3T3 and mouse dermal fibroblast (MDF) adhesion strength on biomimetic apatite functionalized with single- and dual-functioning peptide sequences were evaluated using a centrifugation assay. DPI-VTK had the highest binding strength towards hBMSCs (p < 0.01). DPI-VTK, while promoting strong initial attachment to hBMSCs, did not encourage strong adhesions to MC3T3s or fibroblasts (p < 0.01). Taken together, phage display is a promising strategy to identify preferential cell and material binding peptide sequences that can tether specific cell populations onto specific biomaterial chemistries.

Acknowledgments

We would like to thank Dr Sergei Kuznetsov for the generous contribution of primary human bone marrow stromal cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.