391
Views
7
CrossRef citations to date
0
Altmetric
Articles

Establishment of Singleton-Merten Syndrome pulp cells: evidence of mineralization dysregulation

, , , , &
Pages 57-61 | Received 11 Nov 2013, Accepted 05 Mar 2014, Published online: 26 Aug 2014
 

Abstract

Singleton-Merten syndrome (SMS) is a rare disease with a phenotype of dental dysplasia. Currently, the underlying mechanism of this disease is unknown. In order to investigate the functional mechanism of the SMS tooth phenotypes, we isolated dental pulp tissue and established SMS primary pulp cells. These cells exhibited normal morphology and could be maintained in culture. Their ability to express alkaline phosphatase and mineralize was confirmed by in vitro staining. A comparative osteogenesis polymerase chain reaction array analysis was performed revealing 22 genes up-regulated and 8 genes down-regulated greater than 2-fold in SMS versus unaffected pulp cells. Down-regulated genes included ALP, IGF2, TGFBR2 and COL1A1. Collagen type I was reduced in SMS cells as shown by Western blot analysis. Furthermore, matrix metallopeptidase 13 was found to be dramatically increased in SMS pulp cells. Our findings suggest that dentin mineralization is dysregulated in SMS and may contribute to the root phenotype found in this disease.

Acknowledgments

The authors would like to thank the SMS patient for their participation and the cohort of our SMS collaborators.

Supplementary material available online

Supplementary Table 1: Quantitative Real-Time MMP qRT-PCR primers

Supplemental material available at informahealthcare.com/cts

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.