41
Views
2
CrossRef citations to date
0
Altmetric
Teaching

Modelling of energy expended by free swimming spermatozoa in temperature-dependent viscous semen

Pages 78-84 | Received 24 Feb 2009, Accepted 14 Sep 2009, Published online: 26 Nov 2009
 

Abstract

Derived models of fertilization kinetics have relied upon estimates of the swimming velocity of spermatozoa from the insemination site to a fallopian tube. However, limited derivations are available describing the probability and energy expended when spermatozoa collide with one another. An analytic approach of spermatozoon motion in a linear viscoelastic fluid is adopted to simplify the derivation. The complex kinematics of motion of an inextensible flagellum is modelled as planar flagellar wave of small amplitude. In humans, a temperature difference is expected between the cooler tubal isthmus and the warmer tubal ampulla. Thus, fluidic characteristics of semen such as viscosity can vary along the female reproductive tract. The results suggest that the probability of spermatozoa colliding in relatively lower viscous semen increases by 64.87% for a 0.5°C surge in temperature. Moreover, this increases for a denser concentration of spermatozoa due to the limited semen volume available to manoeuvre. In addition, the propulsive forces and shear stress were 39.35% lower in less viscous semen due to an increase in temperature of only 0.5°C. Hence, the described derivations herein can assist in the understanding of work done by a normal motile spermatozoon in a pool of semen.

Declaration of interest: The author reports no conflict of interest. The author alone is responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.