138
Views
41
CrossRef citations to date
0
Altmetric
Research Article

A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound

, , &
Pages 292-306 | Received 13 Feb 2013, Accepted 08 Apr 2013, Published online: 23 May 2013
 

Abstract

A comparative study of three computer-aided classification (CAC) systems for characterization of focal hepatic lesions (FHLs), such as cyst, hemangioma (HEM), hepatocellular carcinoma (HCC) and metastatic carcinoma (MET), along with normal (NOR) liver tissue is carried out in the present work. In order to develop efficient CAC systems a comprehensive and representative dataset consisting of B-mode ultrasound images with (1) typical and atypical cases of cyst, HEM and MET lesions, (2) small and large HCC lesions and (3) NOR liver cases have been used for designing K-nearest neighbour (KNN), probabilistic neural network (PNN) and a back propagation neural network (BPNN) classifiers. For differential diagnosis between atypical FHLs, expert radiologists often visualize the textural characteristics of regions inside and outside the lesion. Accordingly in the present work, texture features and texture ratio features are computed from regions inside and outside the lesions. A feature set consisting of 208 texture features (i.e. 104 texture features and 104 texture ratio features) is subjected to principal component analysis (PCA) for dimensionality reduction; it is observed that maximum accuracy of 87.7% is obtained for a PCA-BPNN-based CAC system in comparison to 86.1% and 85% as obtained by PCA-PNN and PCA-KNN-based CAC systems. The sensitivity of the proposed PCA-BPNN based CAC system for NOR, Cyst, HEM, HCC and MET cases is 82.5%, 96%, 93.3%, 90% and 82.2%, respectively. The sensitivity values with respect to typical, atypical, small HCC and large HCC cases are 85.9%, 88.1%, 100% and 87%, respectively. Keeping in view the comprehensive and representative dataset used for designing the classifier, the results obtained by the proposed PCA-BPNN-based CAC system are quite encouraging and indicate its usefulness to assist experienced radiologists for interpretation and diagnosis of FHLs.

Acknowledgements

The author Jitendra Virmani would like to acknowledge Ministry of Human Resource Development (MHRD), India for financial support. The authors wish to acknowledge the Department of Electrical Engineering, Indian Institute of Technology, Roorkee, India and Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India for their constant patronage and support in carrying out this research work. The authors would like to thank the anonymous reviewers for their substantive and informed review, which led to significant improvements in the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.