186
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Analysis of heart rate variability signal during meditation using deterministic-chaotic quantifiers

Pages 436-448 | Received 16 Dec 2012, Accepted 19 Jul 2013, Published online: 18 Sep 2013
 

Abstract

This study investigated the level of chaos and the existence of fractal patterns in the heart rate variability (HRV) signal prior to meditation and during meditation using two quantifiers adapted from non-linear dynamics and deterministic chaos theory: (1) component central tendency measures (CCTMs) and (2) Higuchi fractal dimension (HFD). CCTM quantifies degree of variability/chaos in the specified quadrant of the second-order difference plot for HRV time series, while HFD quantifies dimensional complexity of the HRV series. Both the quantifiers yielded excellent results in discriminating the different psychophysiological states. The study found (1) significantly higher first quadrant CCTM values and (2) significantly lower HFD values during meditation state compared to pre-meditation state. Both of these can be attributed to the respiratory-modulated oscillations shifting to the lower frequency region by parasympathetic tone during meditation. It is thought that these quantifiers are most promising in providing new insight into the evolution of complexity of underlying dynamics in different physiological states.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.