102
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Artificial neural network-based classification of body movements in ambulatory ECG signal

&
Pages 535-540 | Received 22 Apr 2013, Accepted 26 Aug 2013, Published online: 17 Oct 2013
 

Abstract

Ambulatory ECG monitoring provides electrical activity of the heart when a person is involved in doing normal routine activities. Thus, the recorded ECG signal consists of cardiac signal along with motion artifacts introduced due to a person’s body movements during routine activities. Detection of motion artifacts due to different physical activities might help in further cardiac diagnosis. Ambulatory ECG signal analysis for detection of various motion artifacts using adaptive filtering approach is addressed in this paper. We have used BIOPAC MP 36 system for acquiring ECG signal. The ECG signals of five healthy subjects (aged between 22–30 years) were recorded while the person performed various body movements like up and down movement of the left hand, up and down movement of the right hand, waist twisting movement while standing and change from sitting down on a chair to standing up movement in lead I configuration. An adaptive filter-based approach has been used to extract the motion artifact component from the ambulatory ECG signal. The features of motion artifact signal, extracted using Gabor transform, have been used to train the artificial neural network (ANN) for classifying body movements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.