192
Views
16
CrossRef citations to date
0
Altmetric
Innovation

EMG classification using wavelet functions to determine muscle contraction

&
Pages 99-105 | Received 07 Aug 2015, Accepted 03 Jan 2016, Published online: 04 Mar 2016
 

Abstract

Surface electromyogram (SEMG) is a complex signal and is influenced by several external factors/artifacts. The electromyogram signal from the stump of the subject is picked up through surface electrodes. It is amplified and artifacts are removed before digitising it in a controlled manner so that minimum signal loss occurs due to processing. As removing these artifacts is not easy, feature extraction to obtain useful information hidden inside the signal becomes a different process. This paper presents methods of analysing SEMG signals using discrete wavelet Transform (DWT) for extracting accurate patterns of the signals and the performance of the used algorithms is being analysed rigorously. The obtained results suggest a root mean square difference (RMSD) value for the denoising and quality of reconstruction of the SEMG signal. The result shows that the best mother wavelets for tolerance of noise are second order of symmlets and bior6.8. Results inferred that bior6.8 suitable for the classification and analysis of SEMG signals of different arm motions results in a classification accuracy of 88.90%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.