61
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Static structural testing of trans-tibial composite sockets

, &
Pages 113-122 | Published online: 12 Jul 2009
 

Abstract

The purpose of this investigation was to quantify the structural strength of various trans-tibial composite sockets. To conduct the study, loading parameters and methods were developed that emulate the International Standards Organisation (ISO) standards for structural testing of lower limb prostheses since specific guidelines for the testing of the trans-tibial socket portion of a prosthesis have not yet been established. The experimental set-up simulated the instant of maximum loading during the late stance phase of gait. Ten trans-tibial sockets were evaluated. Five different reinforcement materials and two resin types were used to construct the sockets. A standard four hole distal attachment plate was used to connect the socket and pylon. Each sample was loaded to failure in a servo-hydraulic materials test machine at 100 N/s.

None of the composites in the study met the ISO 10328 standards for level A100, loading condition II (4025 N), as required for other prosthetic componentry. All failures occurred at the site of the pyramid attachment plate. Ultimate strength and failure type were material dependent. Load point deflection was significantly different for the resin variable (p < 0.05). Statistical differences according to reinforcement material were noted in composite weight and strength-to-weight ratio (p < 0.05).

The fibre volume fraction was also estimated and recorded. Reinforcement material type was the primary determinant of performance for the tested samples. Carbon reinforcements performed better than fibreglass reinforcements of similar weave type. The greatest ultimate strength and strength-to-weight ratio was observed with the unidirectional carbon reinforcement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.