1,410
Views
74
CrossRef citations to date
0
Altmetric
Review Article

Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer’s disease

, , &
Pages 207-223 | Received 11 Oct 2013, Accepted 08 Jan 2014, Published online: 05 Feb 2014
 

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer’s patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers – insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.

Acknowledgements

The authors acknowledge the funding from Natural Science and Engineering Council of Canada (NSERC) – operating grant to Z.L. and NSERC Canada Graduate Scholarship and WIN Graduate Fellowship to E.D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.