Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 40, 2016 - Issue 1
283
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Functional Analysis of an Aγ-Globin Gene Promoter Variant (HBG1: g.-225_-222delAGCA) Underlines Its Role in Increasing Fetal Hemoglobin Levels Under Erythropoietic Stress

, , , , , , , , & show all
Pages 48-52 | Received 19 Aug 2015, Accepted 28 Sep 2015, Published online: 16 Nov 2015
 

Abstract

Hereditary persistence of fetal hemoglobin (HPFH) is a condition characterized by persistent γ-globin gene expression and synthesis of high levels of fetal hemoglobin (Hb F; α2γ2) during adult life. It is usually caused by promoter variants or large deletions affecting the human fetal globin (HBG1 and HBG2) genes. Some of these HPFH-causing variants, such as HBG2: g.-158 C > T, exert their effect only under conditions of erythropoietic stress, typical for β-thalassemia (β-thal) patients. Namely, the presence of HBG2: g.-158 C > T favors a higher Hb F response, while it has little effect in healthy individuals. We analyzed a previously reported deletion residing in the promoter region of the HBG1 gene (HBG1: g.-225_-222delAGCA), both in normal conditions and under conditions of erythropoietic stress. Our results indicate that this deletion is responsible for decreased HBG1 gene expression. Specifically, this deletion was shown to result in drastically reduced reporter gene expression in K562 cells, compared to the wild-type sequence but only under conditions of erythropoietic stress, mimicked by introduction of erythropoietin (EPO) into the cell culture. Also, electrophoretic mobility shift analysis showed that the HBG1: g.-225_-222delAGCA deletion creates additional transcriptional factors’ binding sites, which, we propose, bind a transcriptional repressor, thus decreasing the HBG1 gene promoter activity. These results are consistent with in silico analysis, which indicated that this deletion creates a binding site for GATA1, known to be a repressor of the γ-globin gene expression. These data confirm the regulatory role of the HBG1: g.-225_-222 region that exerts its effect under conditions of erythropoietic stress characteristic for β-thal patients.

Declaration of interest

This study has been funded by the Ministry of Education, Science and Technological Development, Republic of Serbia (grant no. III 41004) and by a European Commission grant (RD-CONNECT; FP7-305444). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.