409
Views
61
CrossRef citations to date
0
Altmetric
Original Article

Particle size reduction for improvement of oral absorption of the poorly soluble drug UG558 in rats during early development

, &
Pages 1479-1486 | Received 25 Dec 2008, Accepted 06 May 2009, Published online: 20 Nov 2009
 

Abstract

Background: The exposure of UG558 was not good enough using traditional microsuspensions. Aim: The aim of this study was to find out whether nanosuspensions were a better choice compared with a microsuspension, for an acidic substance with a water solubility in the order of 2 μM (pH 6.8, small intestinal pH) and no permeability limitations. Methods: UG558 was ground by a planetary ball mill. The particle size was measured by laser diffraction and the stability of the particle sizes was followed. The pharmacokinetic parameters of UG558 administered as nanosuspension have been compared with those from microsuspension using rat as in vivo specie. Both formulations were administered orally. The nanosuspension was also administered intravenously. Results: The particle size of the nanosuspensions was about 190 nm and about 12 μm for the microsuspensions. At the administered doses, solutions were no alternative (e.g. due to limited solubility). Already at the lowest dose, 5 μmol/kg (5 ml/kg), a significant difference was observed between the two suspensions. These results were further confirmed at a high dose (500 μmol/kg, 5 mL/kg). Thus, the study demonstrated a clear correlation between particle size and in vivo exposures, where the nanosuspensions provided the highest exposure. Furthermore, no adverse events were observed for the substance nor the nanosuspension formulations (i.e., the particles) in spite of the higher exposures obtained with the nanoparticles. To make it possible to calculate the bioavailability, 5 μmol/kg doses of the nanosuspensions (5 ml/kg) were also administered intravenously. No adverse events were observed. Conclusions: The nanoparticles have a larger surface, resulting in faster in vivo dissolution rate, faster absorption, and increased bioavailability, compared to microparticles. The lower overall bioavailability observed at the high dose, compared with the low dose, was due to a combination of low dissolution rate, low solubility, and a narrow intestinal absorption window for UG558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.