264
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery

, &
Pages 420-430 | Received 30 Apr 2011, Accepted 24 Jul 2011, Published online: 16 Nov 2011
 

Abstract

Emulsions for parenteral nutrition loaded with drugs are used for optimized drug delivery, but in case of poorly oil soluble drugs, the injection volume can be too large when using commercial 10–20% oil emulsions. To reduce the injection volume, the feasibility of producing injectable, physically stable concentrated emulsions up to 40% oil content was investigated. Emulsions were made from fish oil, stabilized with egg lecithin, using high-pressure homogenization. Emulsions with oil contents of 10%–40% were investigated to assess basic correlations between increasing oil content, applied production pressures, homogenization cycles and resulting bulk droplet size, content of larger particles, zeta potential, viscosity and short-term stability. The observed correlations showed that in high-pressure homogenization, the contribution of the dispersive effect dominated the coalescence effect at low and Optimum production conditions for 30% and 40% nanoemulsions, i.e. 800 bar and 2 -3 homogenization cycles, were established on lab scale. These production conditions are industrially feasible. The obtained droplet sizes (about 200 nm) and the content of larger droplets were comparable to 10% commercial emulsions of parenteral nutrition, being important for in vivo tolerability and organ distribution. Despite the high oil concentration, the viscosity of the nanoemulsions was sufficiently low for injection. The short-term storage study showed physical stability for 1 month. A concentrated nanoemulsion base formulation from regulatory accepted excipients is now available, ready for loading with drugs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.