172
Views
19
CrossRef citations to date
0
Altmetric
Research Article

In situ gelling properties of anionic thiomers

, , , &
Pages 1479-1485 | Received 03 Aug 2011, Accepted 21 Dec 2011, Published online: 11 Feb 2012
 

Abstract

The aim of this study was to investigate in situ crosslinking systems of anionic thiolated polymers. In order to accelerate the increase in dynamic viscosity of thiolated polymers (thiomers), they were combined with hydrogen peroxide, carbamide peroxide and ammonium persulfate. Thiomers (pectin–cysteine (Pec–Cys), sodium carboxymethylcellulose–cysteine (NaCMC–Cys) and poly(acrylic acid)–cysteine (PAA–Cys)) were synthesized via amide bond formation between the carboxylic acid group of polymers and the primary amino group of l-cysteine. The rheological properties of 1% (m/v) thiomer solutions with oxidizing agents were compared by oscillatory measurements over time (120 min). Pec–Cys and NaCMC–Cys with hydrogen and carbamide peroxide showed a sol-gel phase transition within a few minutes and scored up to 13,000-fold increase in dynamic viscosity. Furthermore, only thiomers exhibiting a polysaccharide backbone (Pec–Cys and NaCMC–Cys) showed a significant increase in viscosity (p < 0.05). In contrast, measurements of carbohydrate thiomers in combination with ammonium persulfate showed an initial increase in viscosity. Afterwards, a decrease in viscosity was observed likely caused by chain scission. According to these results, carbohydrate thiomer/oxidizing agent systems might be useful for various pharmaceutical applications such as for in situ gelling liquid/semisolid formulations or in tissue engineering.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.