516
Views
35
CrossRef citations to date
0
Altmetric
Research Articles

Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology

, , , , , & show all
Pages 1434-1445 | Received 05 Aug 2015, Accepted 08 Jan 2016, Published online: 15 Feb 2016
 

Abstract

Purpose: To develop and optimize nanoemulsion (NE)-based emulgel (EG) formulation as a potential vehicle for topical delivery of tea tree oil (TTO).

Methodology: Central composite design was adopted for optimizing the processing conditions for NE preparation by high energy emulsification method viz. surfactant concentration, co-surfactant concentration, and stirring speed. The optimized NE was developed into emulgel (EG) using pH sensitive polymer Carbopol 940 and triethanolamine as alkalizer. The prepared EG was evaluated for its pH, viscosity, and texture parameters, ex vivo permeation at 37 °C and stability. Antimicrobial evaluation of EG in comparison to conventional gel and pure TTO was also carried out against selected microbial strains.

Results and discussion: Optimized NE had particle size and zeta potential of 16.23 ± 0.411 nm and 36.11 ± 1.234 mV, respectively. TEM analysis revealed the spherical shape of droplets. The pH of EG (5.57 ± 0.05 ) was found to be in accordance with the range of human skin pH. EG also illustrated efficient permeation (79.58 μL/cm2) and flux value (JSS) of 7.96 μL cm2/h through skin in 10 h. Viscosity and texture parameters, firmness (9.3 ± 0.08 g), spreadability (2.26 ± 0.06 mJ), extrudability (61.6 ± 0.05 mJ), and adhesiveness (8.66 ± 0.08 g) depict its suitability for topical application. Antimicrobial evaluation of EG with same amount of TTO as conventional gel revealed broader zones of growth inhibitions against all the selected microbial strains. Moreover, EG was also found to be nonirritant (PII 0.0833). These parameters were consistent over 90 d.

Conclusion: TTO EG turned out to be a promising vehicle for the topical delivery of TTO with enhanced therapeutic efficacy.

Acknowledgements

The authors are thankful to Science and Engineering Research Board (SERB), Govt. of India, New Delhi for providing financial assistance (Grant no. SERB/LS-500/2012) in the form of Fast Track Young Scientist Project to Dr. Narayan Prasad Yadav and CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow (India) for providing infrastructure facilities. The authors are also thankful to Dr. C. S. Chanotiya for GC-MS analysis of the oil.

Disclosure statement

The authors state no conflict of interests.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.