107
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Spray-Dried Rice Starch: Comparative Evaluation of Direct Compression Fillers

, &
Pages 587-594 | Published online: 20 Oct 2008
 

Abstract

Spray-dried rice starch (SDRS), microcrystalline cellulose (MCC), lactose (L), pregelatinized starch (PS), and dibasic calcium phosphate (DCP) were studied for their flow behaviors and tableting properties. Both flow rate and percent compressibility values indicated that SDRS exhibited excellent flowability. The increase in magnesium stearate content reduced the hardness of MCC and SDRS tablets; however, general tablet properties were still acceptable while the PS tablets were unsatisfactory at high lubricant concentrations. The hardness of L or DCP tablets was not affected by the lubricant. The disintegration of L tablets was prolonged with the increased lubricant concentration while that of PS tablets seemed to be decreased due to softened tablets. The disintegration times of MCC and SDRS tablets seemed to be independent of the lubricant added. With respect to the dissolution, SDRS-based tablets offered fast and complete release of the drug regardless of its solubility. SDRS, L, and DCP exhibited comparable carrying capacity for ascorbic acid. The best dilution potential was obtained with MCC while the worst was obtained with PS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.