1,557
Views
101
CrossRef citations to date
0
Altmetric
Review Article

Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2

, &
Pages 141-151 | Received 27 Nov 2012, Accepted 05 Jun 2013, Published online: 11 Sep 2013
 

Abstract

The production and storage of energy from renewable resources steadily increases in importance. One opportunity is to utilize carbon dioxide (CO2)-type hydrogenotrophic methanogens, which are an intriguing group of microorganisms from the domain Archaea, for conversion of hydrogen and CO2 to methane (CH4). This review summarizes the current state of the art of bioprocess development for biological CH4 production (BMP) from pure cultures with pure gasses. The prerequisites for successful quantification of BMP by using closed batch, as well as fed-batch and chemostat culture cultivation, are presented. This review shows that BMP is currently a much underexplored field of bioprocess development, which mainly focuses on the application of continuously stirred tank reactors. However, some promising alternatives, such as membrane reactors have already been adapted for BMP. Moreover, industrial-based scale-up of BMP to pilot scale and larger has not been conducted. Most crucial parameters have been found to be those, which influence gas-limitation fundamentals, or parameters that contribute to the complex effects that arise during medium development for scale-up of BMP bioprocesses, highly stressing the importance of holistic BMP quantification by the application of well-defined physiological parameters. The much underexplored number of different genera, which is mainly limited to Methanothermobacter spp., offers the possibility of additional scientific and bioprocess development endeavors for the investigation of BMP. This indicates the large potential for future bioprocess development considering the possible application of bioprocessing technological aspects for renewable energy storage and power generation.

Acknowledgements

We greatly appreciate financial support from Krajete GmbH. Greatly acknowledged is Österreichische Forschungsförderungsgesellschaft (FFG) for financial support with the Klimafonds research grants 830003 and 830004.

Declaration of interest

All authors declare that they have competing interests.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.