Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 9-10
1,045
Views
27
CrossRef citations to date
0
Altmetric
Research Article

TIME-OF-DAY EFFECTS ON COGNITION IN PREADOLESCENTS: A TRAILS STUDY

, &
Pages 1870-1894 | Received 23 Apr 2010, Accepted 04 Aug 2010, Published online: 25 Oct 2010
 

Abstract

Cognitive performance fluctuates during the day due to diurnal variations in alertness level. This study examined: (1) whether cognitive performance in school-aged children is affected by time-of-day; (2) which functional domains are particularly vulnerable to time-of-day effects; and (3) whether the effects are more pronounced for cognitively more demanding tasks or task conditions. Children, aged 10–12 yrs, were randomly assigned to a test session starting either at 08:30 (n = 802), 10:00 (n = 713), or 13:00 h (n = 652). Speed and accuracy of information processing were evaluated by tasks that assess input-related cognitive processes (e.g., stimulus encoding), central cognitive processes (e.g., working memory, sustained attention), and output-related processes (e.g., response organization) using the Amsterdam Neuropsychological Tasks program. Time-of-day effects in children were identified in specific neurocognitive domains, such as visuospatial processing and working memory, but only under cognitively more demanding task conditions. Sustained attention showed a speed-accuracy tradeoff with increased slowness and lapses in the early morning, but with better feedback responsiveness and perceptual sensitivity than in the early afternoon. Furthermore, there was a significant interaction of time-on-task with time-of-day for tempo, with the afternoon group increasing in tempo with time-on-task, and the early-morning group first showing a slowing of tempo with time-on-task, followed at the end of the task by a speed increase towards the initial levels. To conclude, the authors found time-of-day effects in preadolescents, which were confined to cognitively more demanding tasks tapping input-related and central cognitive processes. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

TRAILS has been financially supported by various grants from The Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behavior and Dependence grants 60-60600-98-018 and 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 457-03-018, GB-MaGW 452-04-314, and GB-MaGW 452-06-004; NWO large-sized investment grant 175.010.2003.005); the Sophia Foundation for Medical Research (projects 301 and 393); the Dutch Ministry of Justice (WODC); the European Science Foundation (EuroSTRESS project FP-006); and the participating universities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.