Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 9-10
535
Views
35
CrossRef citations to date
0
Altmetric
Research Article

EFFECT OF CONTINUOUS LIGHT ON DAILY LEVELS OF PLASMA MELATONIN AND CORTISOL AND EXPRESSION OF CLOCK GENES IN PINEAL GLAND, BRAIN, AND LIVER IN ATLANTIC SALMON POSTSMOLTS

, &
Pages 1715-1734 | Received 07 Apr 2010, Accepted 11 Aug 2010, Published online: 25 Oct 2010
 

Abstract

Continuous light is a common practice in salmon farming, where it is used to enhance growth, induce smoltification, and regulate puberty. However, knowledge about how different tissues receive information about daylength is limited. The aim of the present study was to evaluate the daily expression of clock (Per1-like, Cry2, and Clock), the nuclear transcription factor (peroxisome proliferator-activated receptor, PPAR; CCAAT/enhancer binding protein, C/EBP), and the endoplasmic reticulum (ER) stress (protein disulfide isomerase associated 3, PDIA3) genes in the pineal gland, brain, and liver of Atlantic salmon postsmolts reared under 12-h light:12-h dark (LD) regimes or under continuous light (LL) for 6 wks following transfer to seawater. All measured clock mRNAs displayed daily variations in one or more organs under LD, as well as plasma levels of melatonin. Similar variations were noted in the liver c/ebpα, pineal c/ebpδ, and pdia3 mRNAs. Under LL, the clock and nuclear transcription factor mRNAs did not show any daily variation in the studied organs, with the exception of pineal pdia3. Furthermore, LL had the opposite effect on the levels of melatonin and cortisol, as observed by the increase in pineal Clock, Per2, pparα, and c/ebpα and c/ebpδ mRNAs and decrease in liver Clock, Per2, and pparα mRNAs compared to those under LD. The present findings show that the expression of clock genes is affected by the light across organs and that there is a relation between PPAR, C/EBP, and clock mRNAs; however, the functional role of the individual nuclear transcription factors related to this observation remains to be established in the pineal gland and liver. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

We wish to thank Eva Mykkeltvedt, Jacob Wessels, and Leikny Fjeldstad for their excellent analytical work at NIFES and Dr. Bente E. Torstensen for reading through the manuscript. This work was supported by the NIFES Internal Clock.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.