Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 2
348
Views
29
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

Neuropeptide Y–Induced Phase Shifts of PER2::LUC Rhythms Are Mediated by Long-Term Suppression of Neuronal Excitability in a Phase-Specific Manner

, , , , &
Pages 91-102 | Received 12 Oct 2011, Accepted 02 Dec 2011, Published online: 10 Feb 2012
 

Abstract

Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, it was found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0–6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6–7 h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of green fluorescent protein–positive (GFP+) cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5 mM K+ 3 h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health, grant K99/R00 GM086683 (K.L.G.). We thank Karla Eubanks for technical assistance and Dr. Martin Young for helpful comments on the writing of the manuscript.

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.