148
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A truncating TPO mutation (Y55X) in patients with hypothyroidism and total iodide organification defect

, , , , , , & show all
Pages 146-150 | Received 24 Apr 2014, Accepted 15 Sep 2014, Published online: 20 Oct 2014
 

Absract

Purpose: Mutations in the TPO gene have been reported to cause congenital hypothyroidism (CH), and our aim in this study was to determine the genetic basis of congenital hypothyroidism in two affected children coming from a consanguineous family.

Methods: Since CH is usually inherited in autosomal recessive manner in consanguineous/multi case-families, we adopted a two-stage strategy of genetic linkage studies and targeted sequencing of the candidate genes. First we investigated the potential genetic linkage of the family to any known CH locus using microsatellite markers and then screened for mutations in linked-gene by Sanger sequencing. Results: The family showed potential linkage to the TPO gene and we detected a non-sense mutation (Y55X) in both cases that had total iodode organification defect (TIOD). The mutation segregated with disease status in the family. Y55X is the only truncating mutation in the exon 2 of the TPO gene reported in the literature and results in the earliest stop codon known in the gene to date. Conclusions: This study confirms the pathogenicity of Y55X mutation and demonstrates that a nonsense mutation in the amino-terminal coding region of the TPO gene could totally abolish the function of the TPO enzyme leading to TIOD. Thus it helps to establish a strong genotype/phenotype correlation associated with this mutation. It also highlights the importance of molecular genetic studies in the definitive diagnosis and accurate classification of CH.

Acknowledgements

We are grateful to the family who agreed to participate in this study.

Declaration of interest

This study was funded by Birmingham Children Hospital Research Foundation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.